Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements.
نویسندگان
چکیده
OBJECTIVE Our primary goal is to investigate the effects of non-Newtonian blood properties on wall shear stress in microvessels. The secondary goal is to derive a correction factor for the Poiseuille-law-based indirect measurements of wall shear stress. METHODS The flow is assumed to exhibit two distinct, immiscible and homogeneous fluid layers: an inner region densely packed with RBCs, and an outer cell-free layer whose thickness depends on discharge hematocrit. The cell-free layer is assumed to be Newtonian, while rheology of the RBC-rich core is modeled using the Quemada constitutive law. RESULTS Our model provides a realistic description of experimentally observed blood velocity profiles, tube hematocrit, core hematocrit, and apparent viscosity over a wide range of vessel radii and discharge hematocrits. CONCLUSIONS Our analysis reveals the importance of incorporating this complex blood rheology into estimates of WSS in microvessels. The latter is accomplished by specifying a correction factor, which accounts for the deviation of blood flow from the Poiseuille law.
منابع مشابه
Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملA Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)
The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...
متن کاملMHD Flow of Blood through Radially Non-symmetric Stenosed Artery: a Hershcel-Bulkley Model (RESEARCH NOTE)
The purpose of this study is to develop a mathematical model for studying the magnetic field effect on blood flow through an axially non-symmetric but radially symmetric atherosclerotic artery. Herschel-Bulkley equation has been taken to represent the non-Newtonian character of blood. The response of magnetic field, stenosis height, shape parameter on velocity, volumetric flow rate in stenotic ...
متن کاملStatistical analysis of the association between rheological properties of blood and atherosclerosis
The aim of this study is to investigate the effects of non-Newtonian blood rheology models on the wall shear stress (WSS) distribution in a cohort of patients-specific coronary arteries. Twenty patients with diseased left anterior descending (LAD) coronary arteries (with varying degrees of stenosis severity from mild to severe) who underwent angiography and in-vivo pressure measurements were se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microcirculation
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2014